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SUMMARY

This article proposes an algebraic multigrid (AMG) approach to solve linear systems arising from
applications where strong discontinuities are modeled by the eXtended Finite Element Method (XFEM).
The application of AMG methods promises optimal scalability for solving large linear systems. However, the
straight-forward (or ‘black-box’) use of existing AMG techniques for XFEM problems is often problematic.
In this paper, we highlight the reasons for this behavior andpropose a relatively simple adaptation that
allows one to leverage existing AMG software mostly unchanged. Numerical tests demonstrate that optimal
iterative convergence rates can be attained that are comparable to AMG convergence rates associated with
linear systems for standard finite element approximations without discontinuities.
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1. INTRODUCTION

This article discusses algebraic multigrid methods (AMG) to solve linear systems arising from
applications where the eXtended Finite Element Method (XFEM) is employed to capture strong
discontinuities contained within the domain. The idea of the XFEM is to enrich the finite element
space with discontinuous functions such that the discontinuity can be placed anywhere in the
element and does not need to be aligned along element edges. In this way, a mesh with optimally
shaped elements can be used for applications with strong discontinuities, where the position of the
interface may not be known a priori. This flexibility, however, incurs a cost as the discrete system
contains additional degrees of freedoms (DOFs) associatedwith the discontinuous functions, which
requires adaptation of existing FEM software. XFEM examples for strong discontinuities can be
found in computational fracture mechanics [1–6], the modeling of inclusion [7], multiphase-flow
[8], or fluid-structure interaction [9–13], and for four dimensional space-time problems with moving
interfaces [13, 14]. For a recent overview, see [15]. Our particular application is the simulation of
brittle fracture, where the stress field near a crack tip is treated with an additional set of unknowns
and approximation functions referred to as tip enrichment.The specific approximation functions
differ depending on the specific cracking phenomena, e.g. brittle cracks or cohesive cracks.
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While the discretization techniques have matured over the last decade, iterative solution
algorithms for the resulting linear systems are not as developed. Iterative solution is generally
hampered by the large condition number of the linear system that is primarily introduced by the
tip enrichment. This tip enrichment problem has been considered in [16] within the context of one-
level (i.e., not multigrid) iterative methods where special tip treatment was proposed to improve
conditioning. Unfortunately, tip enrichment is not the only issue. This becomes apparent for large
linear systems where one wishes to apply an optimal iterative technique such as AMG. It is well
known that multigrid methods are often the most efficient schemes for very large linear systems
[17, 18]. However, a ‘black-box’ application of existing AMG techniques for FEM to XFEM linear
systems yields little improvement when compared to one-level iterative methods. The main reason
is that AMG methods rely almost exclusively on the graph of the linear system. However, the matrix
graphs of FEM and XFEM linear systems differ in how they represent strong discontinuities.

XFEM and geometric multigrid have been previously considered in [19]. A consistent level-set
function is developed for use within different multigrid levels and different types of enrichment
functions are treated separately within interpolation. Similarly, a local geometric multigrid method
to resolve features near crack tips and generally small cracks has been proposed in [20]. A multilevel
BPX preconditioner is examined in [21] for the generalized finite element method (GFEM) with
simplicial grids. This approach makes use of an additional user-supplied matrix to guide the
preconditioner construction. Standard smoothers are analyzed in [22] for a model GFEM problem.
Line Gauss-Seidel schemes are then proposed for an algebraic multigrid method which rectify poor
convergence issues on a model problem. An algebraic multigrid method for XFEM crack problems
is proposed in [23]. It hinges on partitioning the linear system into a 2× 2 block system based on
whether unknowns are either near or far away from cracks. Almost optimal number of iterations
have been achieved in [24]. However, the approach requires several modifications of the multigrid
code and heavily uses XFEM information on all levels of the multigrid hierarchy, e.g. interface
positions. It may therefore be seen as less optimal if one considers code modularity and code
reuse. Additionally, special degrees-of-freedom associated with discontinuous basis functions are
not coarsened but transferred unchanged to the coarsest level. This leads to many coarse unknowns
and ultimately affects parallel scalability. The focus of our approach is to avoid XFEM specific
information when constructing an AMG multigrid hierarchy.This allows one to employ an existing
multigrid software library unchanged, and results in more modular code.

Two types of enrichment regions are present in our application: those corresponding to crack
faces and those corresponding to crack tips. As we show, multigrid difficulties induced by crack
faces are relatively easy to address. In fact, certain XFEM representations of crack faces do not
introduce any difficulties for an AMG solver. Thus, the key is to understand which representations
are AMG friendly and why. With this knowledge, we then revisit other representations to see how
they can be suitably transformed so that they are more appropriate for AMG libraries. With such a
transformation, we effectively adapt the input to the AMG library instead of changing the library.
On the other hand, crack tip enrichments introduce severe ill-conditioning, but only a relatively few
number of matrix rows are associated with this ill-conditioning. Hence, we treat tip enrichments
as ‘fine scale’ features that are best dealt with on the finest level only and propose a simple
multiplicative Schwarz decomposition that can be added as afine level smoother.

The paper is outlined as follows: the governing equations for linear-elastic fracture mechanics
along with commonly used XFEM techniques are reviewed in Section 2. In Section3, the most
widely used XFEM variants for modeling a crack surface are investigated in terms of the associated
matrix graph with the aim of identifying aspects that might be problematic for an AMG solver. With
this understanding, we then propose a transformation that removes these features. In Section4, the
overall solution approach is sketched. Here, both crack face and crack tip enrichments are treated.
Computational performance is then verified in Section5.

Note that we concentrate on steady problems in this paper as they are usually harder to solve
than dynamic problems due to the lack of ’stabilizing’ transient terms that usually improve iterative
solver performance. However, the proposed algorithm applies equally well to the dynamic case.
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2. FRACTURE MECHANICS USING THE EXTENDED FINITE ELEMENT METHOD

The strong form for a static, linear elastic fracture problem is given as

−∇ ·
˜
σ − f = 0 inΩ (1)

u − uD = 0 in ΓD (2)

˜
σ · n− tN = 0 in ΓN (3)

˜
σ · n = 0 in Γcrack . (4)

Here,
˜
σ denotes the Cauchy stress,f a volume force, andu the displacement in domainΩ. Along

the Dirichlet boundaryΓD, uD denotes the given displacement andtN denotes the surface traction
along the Neumann boundaryΓN. Along all crack facesΓcrack, we assume traction-free Neumann
conditions. The corresponding weak form after integrationby parts is given as

0 =
∫

Ω

∇δd :
˜
σdx −

∫

Ω

δd · fdx −
∫

ΓN
δd · tNdx . (5)

The displacement is discretized as follows

uh(x) =
∑

I

NI (x)uI +
∑

K

NK(x)ψs
K(x)us

K +
∑

L

NL(x)
ntip
∑

J=1

ψ
tip
LJ(x)utip

LJ (6)

The different summations correspond to normal, jump-enriched, andtip-enriched nodes. The
standard shape functions are denoted byN(x) and the enrichment function for crack faces and tips
are denoted byψs

K(x) andψtip
LJ(x), respectively. For our numerical examples, the so-calledshifted

enrichment[25] is employed, whereψs
K(x) is defined as

ψs
K(x) =

1
2

(H(x) − H(xK)) , (7)

with H(x) denoting the Heaviside function given as

H(x) =















+1 inΩa

−1 inΩb .
(8)

The shifted tip enrichment functions are defined as

ψ
tip
LJ(x) =

1
2

(FJ(x) − FJ(xL)) (9)

where the four tip enrichment functionsFJ(x) are

F1(r, θ) =
√

r sin
(

θ

2

)

, F2(r, θ) =
√

r cos
(

θ

2

)

, (10)

F3(r, θ) =
√

r sin
(

θ

2

)

sin(θ) , F4(r, θ) =
√

r cos
(

θ

2

)

sin(θ) . (11)

Other variants for crack and tip enrichment functions can befound in the literature, see e.g. [15]
for an overview. The position of the crack face and the crack tips is often defined by level-set
functions [7, 25]. As the solution methods proposed in this paper are independent of these, they are
not discussed further.

The linear system is constructed by assembling element stiffness matrices and vectors into global
matrix K and f as

K =A
e

[∫

Ωe

∂φ

∂ x
C
∂φ

∂ x
dx

]

(12)
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and

f ext =A
e

[
∫

Ωe

φ f hdx +
∫

ΓN
e

φtN,hdx
]

(13)

whereφ is a vector of all enriched and unenriched approximation functions. For transient problems,
the mass matrix is required, which is computed and assembledas

M =A
e

[∫

Ωe

φρφdx
]

. (14)

The density is denoted byρ. The resulting linear system is of the form

Au = b (15)

where the operatorA equalsK in our case of static, linear elastic fracture mechanics, but could
also contain transient terms or could be the effective tangent stiffness matrix of a non-linear XFEM
problem. The remainder of the paper addresses the solution of Eq. (15).

3. HEAVISIDE ENRICHMENT STRATEGIES AND THEIR EFFECT ON THE LINEAR
SYSTEM GRAPH

3.1. Linear system graphs

Mesh information is not generally supplied or used by an AMG algorithm. Instead, a graph is
constructed by examining matrix entries. This graph effectively occupies the role of the mesh
in traditional geometric multigrid. Ultimately, the graphdetermines the support of interpolation
basis functions and more generally how operators are coarsened. These decisions are based on an
important assumption that the matrix graph represents strong influences. That is, a large change in
the solution at the location associated with one vertex should be accompanied by commensurate
large solution changes at locations associated with neighboring vertices.

Given its importance, we now investigate matrix graphs. Theprimary motivation is to highlight
the different graphs associated with different enriched FE representations and how only some of
these satisfy the strong influence assumption. We begin by defining a matrix graphG. Formally, it
is given by a set of verticesV and a set of edgesE

G = (V,E). (16)

A single vertex represents unknown degrees-of-freedom at asingle mesh node. It is typically
assumed that degrees-of-freedom at a given mesh node are ordered consecutively, e.g.
[u1,x,u1,y,u2,x,u2,y, . . .]. In this setting, thekth vertex represents degrees-of-freedom numbered from
(k− 1)α + 1 to kα whereα is the number of degrees-of-freedom per node. The edge set consists of
vertex pairs

E = {(Vk,Vℓ) | ∃Ai j , 0 where i ∈ Vk, j ∈ Vℓ}. (17)

Thus, vertices correspond to matrix rows and edges correspond to nonzeros for scalar PDEs.† For
PDE systems, block matrix rows define vertices while nonzerosub-matrix blocks define edges.

3.2. Discretization of a 1D truss with a ‘crack’

3.2.1. Finite ElementsConsider a linear elastic material in a one dimensional truss as depicted in
Figure1. Four standard elements (see e.g. [26]) can be used to model the crack: two to the left of the
crack and two to the right of the crack. To enable the discontinuity, separate FE nodes are introduced

†It should be noted that often the magnitude ofAi j is compared with a small threshold instead of simply checking whether
it is nonzero.
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h 3h2h0

Crack position at x = 1.5h

Figure 1. Setup of a 1d truss example. The truss is cracked in the middle atx = 1.5h.
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Figure 2. FE and enriched FE shape functions. Dashed lines correspond to standard FE shape functions,
while full lines indicate enriched shape functions. For better illustration of the discont. approximation

functions, the crack is positioned atxcrack= 1.3h in these pictures.

such that the two elements adjacent to the crack are not connected to each other. The shape functions
for each node are depicted in Figure2a and a global stiffness matrix and mass matrix is given in
TableIa corresponding to element widths ofh/2 for crack-adjacent elements andh for elements far
from the crack. Notice that the matrix graph splits into two disjoint pieces corresponding to the left
and right subdomains. That is, the matrix graph accurately reflects the disconnected nature of the
two subdomains.

3.2.2. Phantom nodesThe phantom node approach is an XFEM variant with discontinuous
shape function that has been proposed by several authors, for instance [2, 5, 7, 27], under
different names and has been shown to be identical to the originalXFEM in [28]. The common
philosophy is to model the domains on each side of the crack separately with a discontinuity in the
element containing the crack and then placing both discretedomains into the same global system.
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Table I. Stiffness and mass matrices for disconnected 1d truss.

Method K/( EA
2h ) M/(1

4
ρAh

6 )

a) Standard

















































2 −2 0 0 0 0
−2 6 −4 0 0 0

0 −4 4 0 0 0
0 0 0 4 −4 0
0 0 0 −4 6 −2
0 0 0 0 −2 2

































































































8 4 0 0 0 0
4 12 2 0 0 0
0 2 4 0 0 0
0 0 0 4 2 0
0 0 0 2 12 4
0 0 0 0 4 8

















































b) Phantom

















































2 −2 0 0 0 0
−2 3 0 −1 0 0

0 0 1 0 −1 0
0 −1 0 1 0 0
0 0 −1 0 3 −2
0 0 0 0 −2 2

































































































8 4 0 0 0 0
4 15 0 2 0 0
0 0 1 0 2 0
0 2 0 1 0 0
0 0 2 0 15 4
0 0 0 0 4 8

















































c) Original XFEM

















































2 −2 −2 0 0 0
−2 4 2 −2 0 0
−2 2 4 0 −2 0

0 −2 0 4 −2 −2
0 0 −2 −2 4 2
0 0 0 −2 2 2

































































































8 4 4 0 0 0
4 16 14 4 0 0
4 14 16 0 4 0
0 4 0 16 −14 4
0 0 4 −14 16 −4
0 0 0 4 −4 8

















































d) Shifted XFEM

















































2 −2 0 0 0 0
−2 4 −1 −2 −1 0

0 −1 1 1 0 0
0 −2 1 4 1 −2
0 −1 0 1 1 0
0 0 0 −2 0 2

































































































8 4 0 0 0 0
4 16 −1 4 4 0
0 −1 1 −2 0 0
0 4 −2 16 1 4
0 4 0 1 1 0
0 0 0 4 0 8

















































e) Abs. Shifted XFEM

















































2 −2 0 0 0 0
−2 4 1 −2 −1 0

0 1 1 −1 0 0
0 −2 −1 4 1 −2
0 −1 0 1 1 0
0 0 0 −2 0 2

































































































8 4 0 0 0 0
4 16 1 4 2 0
0 1 1 2 0 0
0 4 2 16 1 4
0 2 0 1 1 0
0 0 0 4 0 8

















































Specifically, the displacement is discretized as

up =
∑

I∈{1,4}
NI (x)ui +

∑

I∈{2,3}
NI (x)ψa(x)ua

I +
∑

I∈{2,3}
NI (x)ψb(x)ub

I (18)

with

ψa(x) =















1 inΩa

0 inΩb and ψb(x) =















0 inΩa

1 inΩb (19)

whereΩa andΩb refer to the left and right domains, respectively. The resulting shape functions in
Figure2bdemonstrate that one can group the unknowns into unknowns belonging to the left and to
the right domain as

up =
[

u1 ua
2 ub

2 ua
3 ub

3 u4

]T
(20)

where u1, ua
2, and ua

3 influence the displacement only in domainΩa and the remaining DOFs
influence onlyΩb. The existence of unknowns at nodes beyond the interface is the main reason for
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terms likeoverlapping elements[27] or phantom node approach[5]. The matrices in TableIb are
based on the unknown ordering given in Eq. (20). As with standard finite elements, the associated
matrix graph consists of two disconnected pieces accurately reflecting the lack of influence of the
left domain on the right domain (and vice versa).

3.2.3. Original XFEMThe original XFEM discretization of the problem, which follows [1, 3], uses
three connected elements. The displacement is approximated by

ux =

4
∑

I=1

NI (x)ui +
∑

I∈{2,3}
NI (x)ψx(x)ux

I . (21)

whereψx(x) is the Heaviside function given as

ψx(x) = H(x) =















+1 inΩa

−1 inΩb . (22)

The setup can be described as a continuous domain (using fourstandard FE approximations) and
two additional enriched approximations. The resulting shape function for each unknown are given
in Figure2cand the global stiffness matrix and mass matrix are given in TableIc. For the latter, the
unknown ordering in the discrete displacement vectorux is

ux =
[

u1 u2 ux
2 u3 ux

3 u4

]T
. (23)

Unlike the two previous formulations, matrix connections coupling the left and right sub-domains
are now present.

3.2.4. Shifted enrichmentA variant of the original XFEM discretization is the so called shifted
enrichment as introduced in [25], which is popular because it recovers the Kronecker delta
property from standard finite element methods for the unenriched DOFs. Here the displacement
is approximated by

us =

4
∑

I=1

NI (x)uI +
∑

I∈{2,3}
NI (x)ψs

I (x)us
I . (24)

and the enrichment functionψs
I (x) for nodeI is given as

ψs
I (x) =

1
2

(

ψx(x) − ψx(xI )
)

. (25)

The unknown ordering for the matrices in TableId is

us =
[

u1 u2 us
2 u3 us

3 u4

]T
(26)

As a result, two unenriched shape function cross the crack and the two enriched shape functions
are zero at all nodes (see Figure2d). Again, non-zero matrix connections between left and right
sub-domains are present.

3.2.5. Absolute shifted enrichmentFor the discussion in subsequent chapters, we propose a variant
of shifted enrichment which takes the absolute value ofψs

I (x):

ψ
|s|
I (x) =

1
2

∣

∣

∣ψx(x) − ψx(xI )
∣

∣

∣ (27)

and uses this in Eq. (24) as a replacement forψs
I (x) This leads to strictly non-negative approximation

functions for linear Lagrange polynomials and so the corresponding mass matrix has only positive
entries. The difference with shifted enrichment can be seen by comparing Figure2dwith Figure2e.
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The unknown ordering for the matrices in TableIe is

u|s| =
[

u1 u2 u|s|2 u3 u|s|3 u4

]T
(28)

whereu|s|I replacesus
I in Eq. (24). As in the shifted enrichment, non-zero matrix connections between

left and right sub-domains are present.

3.3. Change of basis transformation

The previous sub-section demonstrates that the original XFEM enrichment as well as the shifted
enrichment XFEM yield matrices whichhidethe disconnected nature of the sub-domains as opposed
to the phantom node approach and standard FEM where matricesclearly express this disconnection.
The failure to properly express disconnections complicates the AMG process as described in
Section4. Rather than rewrite AMG procedures or an XFEM implementation, we propose a change
of basis transformation

(GT AG)(G−1u) = GTb (29)

whereGT AG,G−1u, andGTb describe a new matrix, new unknown vector, and new right handside
respectively. The basic idea is to change a matrix which hides disconnections to an equivalent one
where they are respected. In this way standard AMG procedures can be employed on the transformed
matrix without making large software changes on either the solver or discretization side. Codes can
simply apply the transformation before and after the solution of the linear system. Hence, software
with respect to boundary conditions, visualization and similar things, that takes advantage of the
specific properties of the original XFEM or the shifted enrichment XFEM remains untouched.
Further, it will not be necessary to explicitly store transformation matrices due to their inherent
simplicity as will be illustrated later in this section.

To find a transformation, we rely on an equivalence that exists between different XFEM
representations. In particular, the phantom node approachhas been shown to be mathematically
identical to the original XFEM formulation [29] which means that there exists a transformation
matrix Gx

p between these representations. In the following, we repeatthe argument in an adapted
form and show that there exists a similar transformation between the shifted and absolute shifted
enrichment approach and the phantom node approach.

Note that we do not attempt to transform between an XFEM and a corresponding FEM
representation, because creating the transformation matrix would require a new FEM mesh near the
crack and the evaluation of integrals over element subsection. As we show, transformation between
XFEM representation do not require the evaluation of integrals and are therefore preferred.

3.3.1. Transformation between original XFEM and phantom node approachConsider a matrixGx
p

such that
ux = Gx

pup. (30)

Recalling Eq. (19) and Eq. (22) and recognizing their equivalence implies that in an intersected
element

∑

I∈C
NI (x)uI + NI (x)ψx(x)ux

I =
∑

I∈C
NI (x)ψa(x)ua

I + NI (x)ψb(x)ub
I (31)

where the setC denotes nodes which are adjacent to the crack (i.e., nodes which have been enriched).
In our simple example,C would consist of the 2nd and 3rd nodes. Eq. (31) is obtained by equating
Eq. (19) with Eq. (22) and then eliminating unenriched nodes (i.e., the 1st and 4th nodes in our
example) from both sides of the equation. We also have the following two relationships

ψa(x) =
1+ ψx(x)

2
and ψb(x) =

1− ψx(x)
2

. (32)

Thus, Eq. (31) can be re-written as

∑

I∈C
NI (x)

(

uI + ψ
x(x)ux

I
)

=
∑

I∈C
NI (x)

(

1+ ψx(x)
2

ua
I +

1− ψx(x)
2

ub
I

)

. (33)
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For arbitrary shape functions and enrichment functions, wecan conclude that the two summations
are equal if

uI =
ua

I + ub
I

2
and ux

I =
ua

I − ub
I

2
. (34)

In matrix form, this can be written for each nodeI ∈ C as
[

uI

ux
I

]

=

[

0.5 0.5
0.5 −0.5

] [

ua
I

ub
I

]

. (35)

Applied to the 3 element example,Gx
p is defined by

















































u1

u2

ux
2

u3

ux
3

u4

















































=

















































1 0 0 0 0 0
0 0.5 0.5 0 0 0
0 0.5 −0.5 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0.5 −0.5 0
0 0 0 0 0 1

































































































u1

ua
2

ub
2

ua
3

ub
3

u4

















































. (36)

It is block diagonal where the 2× 2 blocks correspond to nodal functions which are modified byψx,
ψa, orψb. Each of these 2× 2 blocks has the same entries as the 2× 2 diagonal blocks in Eq. (35).

It is important to notice that the above transformation did not rely on any property ofNI (x) nor
is there any assumption about the number of nodes inC. The transformation only relies on the
relations given in Eq. (32). These relations, however, are unaffected by the use of higher order shape
functions and further they are also valid in higher dimensions. For example in two dimensions,

ψa(x, y) =















1 inΩa

0 inΩb , ψb(x, y) =















0 inΩa

1 inΩb and ψx(x, y) =















+1 inΩa

−1 inΩb (37)

whereΩa andΩb define two sub-domains on opposites sides of a crack. Thus, itfollows that the same
basic 2× 2 transformation matrix is valid when original XFEM and phantom node discretizations
are employed in higher dimensions and with higher order discretizations. Translating between these
two representations simply requires applying the same 2× 2 matrix to unknowns associated with
each enrichment function and its corresponding unenrichedcounterpart. In the case of vector fields,
e.g. displacement fieldu(x), each of the vector field components is discretized independently, hence,
the transformation is applied to each discretized vector field component independently. An example
for such transformation is given at the end of this section.

3.3.2. Transformation between shifted enrichment and phantom node approachA similar exercise
can be performed for shifted enrichment representations. Recalling Eq. (18) and Eq. (24) and
recognizing their equivalence implies that for all enriched nodesI ∈ C

∑

I∈C
NI (x)uI + NI (x)ψs

I (x)us
I =

∑

I∈C
NI (x)ψa(x)ua

I + NI (x)ψb(x)ub
I . (38)

Using Eq. (25) and Eq. (19), Eq. (38) can be re-written as

∑

I∈C
NI (x)

(

uI +
1
2

(

ψx(x) − ψx(xI )
)

us
I

)

=
∑

I∈C
NI (x)

(

1+ ψx

2
ua

I +
1− ψx

2
ub

I

)

. (39)

For arbitrary shape functions, this equation holds, if

uI +
1
2

(

ψx(x) − ψx(xI )
)

us
I =

1
2

(ua
I + ub

I + ψ
x(x)(ua

I − ub
I )). (40)
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Evaluating Eq. (40) at two arbitrary points on opposite sides of the crack gives

uI +
1
2

(

1− ψx(xI )
)

us
I =

1
2

(ua
I + ub

I + (ua
I − ub

I )) (41)

uI +
1
2

(−1− ψx(xI )
)

us
I =

1
2

(ua
I + ub

I − (ua
I − ub

I )). (42)

After some algebraic manipulations, we obtain

ua
I = uI −

1
2

(

ψx(xI ) − 1
)

us
I and ub

I = uI −
1
2

(

ψx(xI ) + 1
)

us
I . (43)

Solving foruI andus
I and writing the result in matrix form, we obtain

[

uI

us
I

]

=

[

1
2ψ

x(xI ) + 1
2 −1

2ψ
x(xI ) + 1

2
1 −1

] [

ua
I

ub
I

]

. (44)

Applied to the 3-element example, the transformation matrix is

















































u1

u2

us
2

u3

us
3

u4

















































=

















































1 0 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 1 0
0 0 0 1 −1 0
0 0 0 0 0 1

































































































u1

ua
2

ub
2

ua
3

ub
3

u4

















































. (45)

Note that the small 2× 2 sub-matrix is different depending on where a node is located relative to
the crack and so node locations relative to each crack must beevaluated when constructing this
transformation.

3.3.3. Transformation between absolute shifted enrichment and phantom node approachThe
equivalent to Eq. (40) for this enrichment is

uI +
1
2

∣

∣

∣ψx(x) − ψx(xI )
∣

∣

∣ u|s|I =
1
2

(ua
I + ub

I + ψ
x(ua

I − ub
I )). (46)

Evaluating at two arbitrary points on opposite crack sides gives

uI +
1
2

∣

∣

∣1− ψx(xI )
∣

∣

∣ u|s|I = ua
I (47)

uI +
1
2

∣

∣

∣−1− ψx(xI )
∣

∣

∣ u|s|I = ub
I . (48)

Solving foruI andu|s|I and writing the result in matrix form leads to

[

uI

u|s|I

]

=

[

1
2 +

1
2ψ

x(xI ) 1
2 −

1
2ψ

x(xI )
−ψx(xI ) ψx(xI )

] [

ua
I

ub
I

]

. (49)

Applied to the 3-element example,G|s|p is defined by



















































u1

u2

u|s|2
u3

u|s|3
u4



















































=

















































1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 0 1 0
0 0 0 1 −1 0
0 0 0 0 0 1

































































































u1

ua
2

ub
2

ua
3

ub
3

u4

















































(50)
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2 31

Crack position

(a) 1d quadratic truss element

2

3

1

Crack position

(b) 2d linear displacement element

Figure 3. Illustrative examples.

which can be re-ordered as
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. (51)

In Eq. (51), we have a repeating pattern of 2× 2 sub-matrices with 1 on the diagonal and -1 as the
lower left matrix entry at each node, while in Eq. (50), the sub-matrix pattern depends on the nodal
position. In other words, we can choose to have a fixed transformation matrix with a nodal position
dependent phantom node ordering (Eq. (51)) or vice versa (Eq. (50)).

3.4. Illustrative Examples

We close this section with three transformation examples. The first is a one dimensional truss
discretized with a single three node quadratic element as depicted in Figure3a. In this case, absolute
shifted enrichment is used at all nodes and the transformation is given by
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. (52)

Each 2× 2 sub-matrix on the block diagonal is identical to those in Eq. (51). This means that the
presence of quadratic basis functions does not change the transformation structure. As mentioned
earlier, a particular vector ordering is assumed in the transformed space to obtain this constant block
diagonal structure. Specifically, at some nodesua

I appears beforeub
I while this is reversed at other

nodes. If one needed to actually determine this ordering, then it would be necessary to evaluate
nodal positions relative to the discontinuity. However, this information is not required during the
transformation as the algebraic multigrid procedure does not make use of the specific ordering.
Thus, there is no need to maintain any information about nodal positions within the transformation
implementation.

The second example is from two dimensional linear elasticity discretized by a single triangular
element using linear basis functions. The triangle is intersected by a crack as depicted in Figure3b
and so each of the three nodes has two standard basis functions corresponding tox- and y-
displacements as well as two absolute shifted enriched basis functions corresponding tox- and
y-displacements. The transformation is defined by
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Figure 4. Mesh sub-divided by two cracks.
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. (53)

This same transformation applies even if the crack is located differently within the element. The
only difference (changes in the ordering of some transformed unknowns) does not impact the AMG
library. That is, the crack location and orientation do not affect the basic block structure of the
transformation.

The last example corresponds to a large finite element mesh where two cracks effectively divide
the domain into three physically independent regions (see Figure4). As expected, the transformed
mass and stiffness matrices in Figure5 have three independent blocks, while no block structure is
apparent in the untransformed stiffness matrix. It should be noted that in all cases a re-ordering
algorithm is applied [30] only to reveal any possible block structure to the human eye, such
permutation is not needed in a multigrid computation.

Before closing this section, we note one subtle but important matrix graph issue within the AMG
scheme (given by Eq. (16) and Eq. (17)). In particular, we stated that a single vertex represents
unknown degrees-of-freedom at a single mesh node. While this would be true for a standard FEM
discretization, the situation is a bit different for a phantom node approach. In particular, whileua

I
andub

I are located at the same mesh location in the one dimensional examples, they correspond
to unconnected degrees-of-freedom on opposite sides of thecrack. Thus, they are treated as two
different vertices in the AMG graph representation. Similarly,in the two dimensional example, the
two degrees-of-freedom corresponding toua

I ,x andua
I ,y are treated as one vertex whileub

I ,x andub
I ,y

are treated as a second vertex. Notice in Eq. (53) that x andy displacements corresponding to a
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Figure 5. Sparsity pattern for stiffness and mass matrix (blue dots indicate non-zero matrix entries); the
matrix entries are re-ordered using the symmetric reverse Cuthill-McKee permutation [30] to make the
block structure visible. Note that the mass matrix has 6 independent blocks, since mass matrix entries for x-

and y-displacement are also independent from each other.

single vertex are ordered consecutively (which is typically required of most AMG codes). Finally,
it is worth pointing out that the number of degrees-of-freedom per vertex is also constant with this
phantom node representation (which is often also a requirement of AMG codes). This is in contrast
to a traditional XFEM discretization where the most naturalassignment of degrees-of-freedom to
vertices would not lead to a constant number of degrees-of-freedom per vertex.

4. APPLYING ALGEBRAIC MULTIGRID TO XFEM DISCRETIZATIONS

4.1. Overview

Multigrid algorithms are efficient techniques for solving large linear systems [17, 18]. Their rapid
convergence hinges on an interplay between smoothing and coarse correction. Smoothing is a simple
iteration focused on reducing oscillatory error. The coarse correction is the formation and projection
of a residual equation onto a coarse space. The central premise is that error can be represented
at a coarser resolution once it has been smoothed. The solution to the projected system is then
approximated (often via a recursive multigrid invocation), interpolated, and finally added to the fine
level iterate. The key is that basic iterative procedures are normally efficient at reducing oscillatory
error when applied to elliptic problems. Algorithm1 illustrates a multigrid V-cycle.Aℓ is the

Algorithm 1 Multigrid V-cycle to solveAℓu = b .

functionMGV(Aℓ, u, b, ℓ) :
if ℓ , ℓmax then

u← Spre
ℓ

(Aℓ, u, b)
r← b − Aℓu
c← 0
c← MGV(Aℓ+1, c, Rℓr, ℓ+1)
u← u + Pℓc
u← Spost

ℓ
(Aℓ,u, b)

else
u← A−1

ℓ b

discretization matrix on levelℓ. Rℓ restricts residuals from levelℓ to levelℓ+1, andPℓ prolongates
from level ℓ+1 to ℓ. Spre

ℓ
() andSpost

ℓ
() are smoothing procedures. Algebraic multigrid providesan

automated framework where grid transfers are generated algebraically and the discrete equations are
projected with a triple matrix product,Aℓ+1 = RℓAℓPℓ. For symmetric systems only a prolongator
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Figure 6. Exemplary 1d aggregation pattern (finest level): Same color implies same aggregate.

is developed as the restrictor is taken as the transpose of the prolongator to preserve symmetry of
the AMG preconditioner.

In the following, we first describe the AMG process for the Heaviside enrichments along the
crack face and, subsequently, for tip enrichments. Our intention is to leverage existing software and
so we limit our discussion to AMG issues with XFEM implications and refer to [17, 18, 31, 32] for
AMG details.

4.2. Heaviside enrichments

4.2.1. Aggregation and grid transfer operatorsFor Heaviside enrichments, the main challenge is
how to define the transfer operatorPℓ. The process of creating aPℓ begins by defining a matrix
graph as described by Eq. (16) and Eq. (17). A coarsening strategy must then be chosen. In this
paper, we focus on smoothed aggregation coarsening [32, 33], though this is not necessary for our
XFEM/AMG approach. In the smoothed aggregation case, coarseningis accomplished by grouping
the graph vertices into a set ofaggregatesAi

ℓ
, such that

Nℓ+1
⋃

i=1

Ai
ℓ =

{V1, ...,VNℓ

}

, Ai
ℓ ∩A

j
ℓ
= ∅ , 1 ≤ i < j ≤ Nℓ+1 , (54)

whereNℓ denotes the number of graph vertices on levelℓ and Nℓ+1 is the number of aggregates
created during the aggregation phase. As each aggregate on levelℓ gives rise to one vertex on the
next level, the matrix graph for levelℓ + 1 hasNℓ+1 vertices. Aggregation specifics are not important
here. The main idea is that each aggregate is essentially defined by first choosing an unaggregated
vertex and grouping it with all of its unaggregated neighborvertices.‡ In this way, aggregates are
comprised of neighboring vertices.

If we now consider this aggregation phase in the context of the phantom node approach, we
recall that vertices within different disconnected regions correspond to solutions associated with
opposite sides of a discontinuity. Clearly, two vertices from two different disconnected regions are
not neighbors in the corresponding matrix graph. This meansthat vertices associated with opposite
sides a crack will not be grouped into the same aggregate during the aggregation phase. This is
depicted in Figure6 for a one dimensional example. The blue and red lines denote some sample
displacements to the left and to the right of the discontinuity respectively. Here, it is important to
recall that at node five and at node six there are two vertices corresponding toua

5, u
b
5,u

a
6, andub

6.
Individual aggregates are depicted by rectangles and circles just below the rectangles. Two circles
are given at node five and at node six. The inner circles correspond toua

5 andub
6 while the outer

circles areub
5 andua

6. That is, outer circles depict vertices associated withphantombasis functions.
These displacements correspond to the solution on the opposite side of the discontinuity compared
to where the node is located. Thus, in this particular example the purple aggregate corresponds to

‡Aggregation schemes include heuristics allowing a couple of vertices which are neighbors of the neighbors to be
assigned to the aggregate. These heuristics are oriented toward encouraging fairly equisized aggregates.
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Figure 7. Exemplary 2D aggregation pattern (finest level): Same color implies same aggregate, white color
indicates Dirichlet BC (not part of any aggregate).

the vertices associated withu3,u4, ua
5 andua

6, all of which are associated with displacements within
Ωa. Figure7 depicts similar information in two dimensions.

With aggregates defined, a simple aggregate-wise prolongator can now be constructed,

P̂ℓ =


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































P̂1,1
ℓ

P̂2,2
ℓ

. . .
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
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

























, (55)

where for simplicity of exposition we have assumed that all matrix rows associated with a specific
aggregate are ordered consecutively. The detailed contents of theP̂i,i

ℓ
are unimportant for this paper.

The key point is that basis functions do not span multiple aggregates. As the aggregates respect
the discontinuity (for a phantom node discretization), then the prolongator is able to capture this
discontinuity. This implies that ifAℓ has disconnected regions, thenAℓ+1 = P̂T

ℓ Aℓ P̂ℓ will also have
disconnected regions and so the coarse level discretization is guaranteed to properly represent the
disconnected nature of a crack.

By contrast, an original XFEM (or shifted enrichment, or absolute shifted enrichment) version
of Aℓ does not have disconnected regions. This means that the matrix graph contains edges whose
two vertices are on opposite sides of cracks. Thus, aggregates generally cross discontinuities and so
the corresponding prolongator will include interpolationbasis functions which also cross cracks. As
the algebraic multigrid method has no explicit informationabout cracks nor was it designed with
XFEM discretizations in mind, it is most likely that the resulting coarse level discretization will not
properly capture a strong discontinuity. That is, coarse solutions will be smooth across the crack
and not accurately represent the physical features of the fine level discretization. Thus, it should not
be surprising that the black-box application of AMG methodsto original (or shifted enrichment, or
absolute shifted enrichment) XFEM discretizations might be problematic while at the same time its
application to a phantom node representation might be more promising.

In practice, the interpolation given by Eq. (55) is referred to as the tentative prolongator in
smoothed aggregation terminology. It is often improved via

Pℓ = (I − ωD−1
ℓ Aℓ)P̂ℓ (56)
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where the matrixDℓ contains the diagonal entries ofAℓ, andω is an automatically generated
parameter chosen so that oscillatory modes are damped. The details are again not so important in
understanding the XFEM ramifications. What is important in our context is to recognize that Eq. (56)
still respects discontinuities whenAℓ is a phantom node discretization. In particular, ifP̂ℓ does
not include interpolation basis functions which traverse adiscontinuity and ifAℓ has disconnected
regions associated with cracks, thenPℓ will also not have basis functions crossing discontinuities.
Thus, Aℓ+1 = PT

ℓ AℓPℓ will once again contain disconnected regions and is guaranteed to properly
represent the disconnected nature of the discontinuities.

4.2.2. Null spaceIn smoothed aggregation, users are required to supply something referred to as
the near null space. For linear elasticity, this near null space corresponds to the rigid body modes.
Thus, in two dimensions, the user should provide three vectors: one corresponding to a constantx
direction translation, one corresponding to a constanty direction translation, and one corresponding
to a constant rotation in thex-y plane. For example, the null space vectors for a 2D finite element
problem with an assumed DOF ordering of

u =
[

u1,x u1,y . . . uI ,x uI ,y . . . uN,x uN,y

]T
(57)

is given as

N =
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
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



T

(58)

wherexI andyI describe the position of nodeI . Thus, the last row describes a rigid body rotation
around the origin. In 3D, users provide six vectors (three translations and three rotations).

For fracture problems, rigid body motion implies that the crack does not open or close during
such movement. Hence, in the phantom approach, these vectors are naturally defined at all nodes
including phantom nodes identical to how one would do for a standard FEM discretization. With
original, shifted enrichment, or absolute shifted enrichment XFEM, the additional degrees of
freedom alone describe the width of the crack opening. In other words, the enriched degrees
of freedom do not contribute to rigid body modes of the full domain. Hence, one defines a
standardnear null space for degrees-of-freedom associated with unenriched basis functions and
sets vector components associated with enriched degrees-of-freedom to zero. Thus, if nodeI has
both unenriched and enriched degrees of freedom,

u =
[

u1,x u1,y . . . uI ,x uI ,y us
I ,x us

I ,y . . . uN,x uN,y

]T
, (59)

then the corresponding null space would contain 0 for the enriched degrees of freedom:

N =
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

















T

. (60)

When one applies the transformation given by Eq. (29) to the matrix, it is also necessary to apply
G−1 to the near null space vectors before providing these to an AMG setup procedure

N∗ = G−1N. (61)

In this way, null space vectors automatically correspond toa proper phantom node representation.

4.2.3. ImplementationThe simplest implementation would explicitly formG, GT, G−1, andGT AG.
The AMG setup phase would then be suppliedGT AG and the transformed null space. During
the solve phase, one would apply the outer iterative solver to the original system,A. Within the
preconditioner, however, residual vectors would be transformed viaGT before being passed to the
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multigrid V-cycle procedure. The approximation that results from this multigrid procedure would
then be transformed back to the original space viaG before being passed back to the outer iterative
procedure. In this way, very few changes need to be made to either the XFEM or the AMG software.
Of course, this simple implementation requires the storageof several additional matrices. It is,
however, important to recognize that some storage can be avoided due to the the simple form of
the transformation. In particular, it was shown in the previous section that it is generally possible to
defineG with the help of one 2× 2 matrix which appears in several places along the block diagonal.
The same obviously follows forGT andG−1. Thus, it is not strictly necessary to explicitly store
these so long as one is able to perform matrix-vector and matrix-matrix products. For example,
within the ML multigrid package [34], matrices can be specified by supplying only two functions:
one which is able to apply matrix-vector products and the other which can supply a single matrix
row ‘on the fly’ when it is requested. In this way, explicit storage ofG, GT, G−1 can be avoided if one
implements these implicitly. In fact, it is even possible toavoid the explicit storage ofGT AG, though
this is considerably more challenging from an implementation perspective. Of course, implicit
representations may incur some additional cost when these operators are employed. While we have
not implemented storage-saving measures, our best guess itthat efficient implementations would
add only modestly to the setup phase run time and even less to the solve phase run time.

4.3. Tip Enrichments

4.3.1. Null space, transformation, and transfer operatorsTip enrichments describe a local feature
around the crack tip. In the original XFEM publications, these tip enrichments only span the element
that contains the crack tip, while more recently, elements in a given radius around the crack tip are
enriched [35]. From an AMG perspective, tips are considered as high frequency features that are
best treated by smoothing, because they cannot easily be represented on a coarser grid of a multigrid
hierarchy. Hence, our strategy is tonot include the extra degrees into the transfer operators. To do
this without modifying ‘AMG software’, we exploit the way that smoothed aggregation constructs
prolongators. Without going into details, the prolongatorconstruction usually ignores degrees of
freedom that do not contribute to the null space. In other words, if a degree of freedom is not needed
to represent near null space modes, they are not interpolated from coarser grids. Hence, in practice,
we only need to make sure that the null space vector has zero entries for the enriched DOFs. As
described in Section4.2.2, the null space vector automatically contains zeros for enriched DOFs
when shifted enrichment, absolute shifted enrichment, or original XFEM form is used. To preserve
this quality, an identity matrix is used for tip enriched DOFs in the transformation matrixG. This
means that all Heaviside DOFs are in phantom node form while all tip enriched DOFs are in their
original form after the transformation. Thus, the null space associated with tip DOFs are all zero
and so they are ignored within the prolongator.

4.3.2. SmoothingAs mentioned in the introduction, tip enrichment functionsalso introduce a
significant level of ill-conditioning. As a remedy, we propose a multiplicative Schwarz solution
strategy for the finest level, where, in addition to a smoothing step for the entire domain, we
solve directly for all unknowns that are attached to nodes with tip enriched elements. If multiple
disconnected regions of unknowns are present, each of them can be solved independently. Formally,
let setT contain all DOFs associated with the tip enrichmentF plus the normal degree-of-freedom
associated with tip elements. For example, this would result in a block size of 40× 40 (8 standard
DOFs+ 32 enriched DOFs) for a 2D bilinear 4 node quadrilateral element, as used in the examples.
Now define a smootherStip that acts only onT as

Stip
TT = Ã

−1
TT (62)

Stip
i j = 0 if i < T or j < T (63)

where Ã = GT AG denotes the transformed system. Note that the meaning ofT does not change
during the application ofG, because tip enriched DOFs and unenriched DOFs at tip nodes are not
altered during the transformation.
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With this definition, the two-step (multiplicative Schwarz) pre-smoother on the finest level is

u← GaussSeidel(u, Ã, b) (64)

u← u + Stip(b − Ãu) (65)

and the post-smoother is defined as

u← u + Stip(b − Ãu) (66)

u← GaussSeidel(u, Ã, b) . (67)

The inverted order of the smoothing is necessary to obtain a symmetric operator.
For 3D problems, the block size is expected to be larger, because the tip enrichments would be

placed along a line, hence several elements with tips are connected. Nevertheless, the block size
should stay within reasonable limits such that the proposeddirect solve is not a limiting factor.

4.4. Summary

Summarizing all algorithm components needed to use an existing smoothed aggregation library, the
user must provide the following input:

1. construct null space with standard rigid body modes for unenriched DOFs, zero contributions
for tip DOFs, and for Heaviside DOFs one needs either zero contributions for shifted and
original XFEM or standard contributions for phantom node representations,

2. establish transformation matrix and transform linear system before passing it to the AMG
library,

3. ensure pre-dropping of weak graph connections, which is part of most existing AMG libraries,
to remove artifacts (near-zeros) stemming from theGTKG transformation, and

4. employ additional smoothing on finest grid for elements with tip DOFs.

5. EXAMPLES

We concentrate on static problems only as they are usually harder to solve than system matrices
representing dynamic systems. Dynamic problems can be solved in exactly the same fashion.

5.1. XFEM with only jump enrichments

We first focus on somewhat arbitrary crack locations and thentake a closer look at the crack location
within an element.

5.1.1. General problemsFigure8 illustrates a range of examples. The domain is of size 1× 1 with
zero Dirichlet boundary conditions at the top and bottom surface, zero Neumann conditions on the
left surface, and a constant-load Neumann condition on the right surface. Note that in Figure8c the
crack crosses the entire domain effectively creating two independent sub-domains. For comparison,
we also include an FEM example without any cracks in Figure8a.

The results are given in TableII . The iteration numbers use a block-Gauss-Seidel smoother with
only 1 level (basically a standard iterative solver) to the original shifted enrichment system and to
the transformed system (columns 1 and 3) and use the proposedmultilevel solver on the original
and transformed system (columns 2 and 4). A dash indicates that convergence is not achieved within
200 iterations. Applying the AMG solver to the transformed system gives iteration counts that are
relativelyindependent of the mesh refinement. Although there is some growth in iteration numbers,
the importance of applying the transformation in conjunction with AMG is clearly apparent.

5.1.2. Sensitivity to crack distance from element nodesLocating the crack surface closer to an edge
or node generates enriched approximations that are either becoming linear dependent to the regular
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(a) Mesh I (b) Mesh II (c) Mesh III

(d) Mesh 1a (e) Mesh 1c

Figure 8. Illustrative examples.
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(b) 45◦-crack

Figure 9. Setup for sensitivity analysis.

finite element approximation or, in the case of the phantom node approach leads to a DOF with
almost zero support. As a result, the condition number of thelinear system can be arbitrarily higher
than for a comparable FEM problem without cracks. These highcondition numbers are well known
and have been reported in a number of studies, e.g. [2, 35]. The general solution is to not enrich such
nodes anymore [2] to avoid a rank deficient system matrix. Two studies are depicted in Figure9a
and Figure9b, where aL × L domain is intersected by a horizontal and a 45◦ crack, respectively.
In the horizontal case, the crack end points are(0.0, 0.5L + εch) and(0.5L − 0.25h, 0.5L + εch).
For the 45◦ crack, the end points are(0.0, (3− εc)h) and (0.5L − 0.25h, 0.5L + (2.75− εc)h).
As εc approaches 0, the system becomes more ill-conditioned. Results are given in TableIII and
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Table II. Iteration and condition numbers for the example problems depicted in Figure8 with only Heaviside
enrichments enabled.

Case ne× ne αcond. niter

A GT AG

1L ML 1L ML

I

30× 30 3e+03 32 9 32 9
60× 60 1e+04 63 10 63 10
90× 90 3e+04 93 11 93 11

120× 120 5e+04 123 11 123 11

II

30× 30 1e+04 46 23 43 11
60× 60 5e+04 86 34 84 12
90× 90 1e+05 127 42 126 15

120× 120 2e+05 170 49 167 15

III

30× 30 6e+05 59 40 53 11
60× 60 3e+06 109 55 101 11
90× 90 8e+06 156 68 153 12

120× 120 8e+06 - 80 - 14

1a

30× 30 1e+05 54 16 54 11
60× 60 4e+05 106 20 105 13
90× 90 1e+06 157 24 157 16

120× 120 2e+06 - 26 - 16

1c

30× 30 2e+07 78 38 76 16
60× 60 7e+07 150 52 146 16
90× 90 1e+08 - 63 - 18

120× 120 2e+08 - 73 - 18

TableIV. Note that by changingh andεc, different physical problems are generated, which makes
iteration counts for varyingh formally not directly comparable. Nevertheless, it can be seen that for
a givenh, the iterative performance for both the 1-level method and the multigrid solution is almost
independent with respect toεc. The reason for this is that Gauss-Seidel is generally insensitive to
conditioning problems that could be resolved by a simple diagonal scaling of the linear system.

For εc smaller than the given results the AMG process breaks down due to numerical precision
limits. As a remedy, not enriching unknowns with such small support as proposed e.g. in [2] makes
the system solvable again. In [2], a node was not enriched, if the support on one side of the crack
divided by the element area was below a threshold of 1· 10−4. For our 45◦-crack example, the
area ratioAUL/Aele – the upper left triangle areaAUL divided by the element areaAele – can be
computed asAUL/Aele = ε

2
c/2. Choosingεc = 0.001 results in an area ratio of 5· 10−7, which is

about two magnitudes smaller than the limit given [2]. For the horizontal crack,εc directly gives
the area fraction. Hence, we conclude that the proposed multigrid scheme is able to cover all crack
configurations that occur in practical XFEM simulation, if above threshold for enriching nodes is
used.

5.2. XFEM with jump and tip enrichments enrichments

We now add tip enrichments around crack tips (in addition to the Heaviside enrichment) and focus
on the transformed system. Comparison of TableV with TableII clearly shows that for the same
crack position, the tip enrichment makes the linear system more difficult to solve. First of all,
the condition number is always higher, if tip enriched DOFs are included. Correspondingly, the
iteration counts in column 1 (no multigrid) are always higher than in TableV. Applying AMG to the
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Table III. Results for crack location sensitivity, horizontal crack, Heaviside enrichment only

A GT AG

n n

εc ne× ne 1L ML αcond 1L ML αcond

0.5

10× 10 26 14 2e+04 25 9 1e+04
20× 20 47 20 6e+04 44 13 4e+04
40× 40 88 25 2e+05 86 13 2e+05
80× 80 169 43 8e+05 167 17 7e+05

0.01

10× 10 27 15 2e+04 24 9 2e+04
20× 20 47 22 6e+04 45 13 5e+04
40× 40 88 26 2e+05 85 13 2e+05
80× 80 170 44 9e+05 168 17 7e+05

0.0001

10× 10 27 15 2e+06 24 9 1e+06
20× 20 47 22 2e+06 45 13 1e+06
40× 40 88 26 2e+06 85 13 1e+06
80× 80 170 45 2e+06 168 17 2e+06

0.000001

10× 10 27 15 2e+08 24 9 1e+08
20× 20 47 22 2e+08 45 13 1e+08
40× 40 88 26 2e+08 85 13 1e+08
80× 80 170 45 2e+08 168 17 1e+08

0.00000001

10× 10 27 15 2e+10 24 9 1e+10
20× 20 47 22 2e+10 45 13 1e+10
40× 40 88 26 2e+10 85 13 1e+10
80× 80 170 45 2e+10 168 17 1e+10

Table IV. Results for crack location sensitivity, 45◦-crack, Heaviside enrichment only

A GT AG

niter niter

εc ne× ne 1L ML αcond 1L ML αcond

0.5

10× 10 29 18 3e+04 27 10 2e+04
20× 20 52 25 1e+05 49 14 7e+04
40× 40 95 36 3e+05 92 14 3e+05
80× 80 182 50 1e+06 178 18 1e+06

0.1

10× 10 31 20 2e+06 27 11 2e+06
20× 20 53 27 2e+06 48 14 2e+06
40× 40 96 37 3e+06 92 14 2e+06
80× 80 184 53 4e+06 178 16 3e+06

0.01

10× 10 31 20 3e+10 27 11 2e+10
20× 20 53 27 3e+10 48 14 2e+10
40× 40 96 38 3e+10 91 14 2e+10
80× 80 183 53 3e+10 178 16 2e+10

0.001

10× 10 31 21 3e+14 27 11 2e+14
20× 20 53 27 3e+14 48 14 2e+14
40× 40 97 38 3e+14 92 14 2e+14
80× 80 183 53 3e+14 178 16 2e+14
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Table V. Heaviside and Tip Enrichment: Results for transformed systemGT AG. The abbreviations are
defined as: 1L: one level, ML: multilevel, ML, TS: multilevelwith tip smoother on finest grid.

Case ne × ne αcond. niter

1L ML ML, TS

I

30× 30 3e+03 32 9 9
60× 60 1e+04 63 10 10
90× 90 3e+04 93 11 11

120× 120 5e+04 123 11 11

II

30× 30 2e+07 115 75 18
60× 60 8e+08 - 97 20
90× 90 8e+09 - 114 23

120× 120 3e+10 - 141 21

III

30× 30 5e+07 143 94 18
60× 60 1e+09 - 158 20
90× 90 2e+10 - - 20

120× 120 3e+10 - - 24

1a

30× 30 6e+05 66 31 16
60× 60 3e+06 117 30 16
90× 90 1e+07 165 33 20

120× 120 2e+07 - 32 19

1c

30× 30 1e+08 86 34 20
60× 60 7e+08 157 34 21
90× 90 2e+09 - 35 24

120× 120 3e+09 - 34 23

transformed system (column 2) does improve the iteration count substantially. While for problem 1a
and 1c this may already be a practically useful number of iterations, iteration counts for problem II
and III are still not satisfactory. Only the multiplicativeSchwarz smoothing gives an almost optimal
number of iterations. More importantly, the difference between cases II and III versus 1a and 1c
vanishes, such that all XFEM simulations converge in less than 30 iterations for the given mesh
sizes.

Note that the position of the crack tip within the element does not significantly influence the
condition number of the problem as the size of the associatedmatrix entries is not changed
significantly (as in the case of Heaviside enrichments). Hence, no degeneration of the linear system
is expected. For demonstration, we repeated the 45◦-crack simulation (Figure9b), this time with
both Heaviside and tip enrichments enabled. It can be seen inTableVI that moving the crack tip
within the element does not change the iteration count.

6. SUMMARY & CONCLUSION

We presented an algebraic multigrid approach to solve linear systems arising from applications
where strong discontinuities are modeled by XFEM. In particular, we presented techniques that are
applicable to fracture problems, which typically use Heaviside enrichment functions to model the
crack face and special tip enrichment functions to model thenear tip displacement and stress field.

We demonstrated, that the phantom node approach for modeling the crack face naturally fits
the assumptions that underlay existing AMG methods for finite elements. For original and shifted
XFEM approximations, we provided a simple and inexpensive –in terms of both memory and
computation time – transformation to the phantom node representation such that software changes
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Table VI. Results for crack location sensitivity, 45◦-crack, Heaviside and tip enrichments

A GT AG

niter niter

εc ne × ne 1L ML, TS αcond 1L ML, TS αcond

0.5

10× 10 33 22 1e+05 30 17 1e+05
20× 20 53 28 3e+05 50 19 3e+05
40× 40 96 39 7e+05 93 21 6e+05
80× 80 182 55 2e+06 179 25 2e+06

0.1

10× 10 34 24 3e+06 31 18 3e+06
20× 20 54 30 3e+06 50 20 3e+06
40× 40 96 41 3e+06 92 21 3e+06
80× 80 184 57 4e+06 179 25 3e+06

0.01

10× 10 35 25 3e+10 31 18 3e+10
20× 20 55 30 3e+10 50 20 3e+10
40× 40 97 41 3e+10 92 21 2e+10
80× 80 184 58 3e+10 179 25 2e+10

0.001

10× 10 35 25 3e+14 31 18 3e+14
20× 20 55 30 3e+14 50 20 3e+14
40× 40 97 41 3e+14 92 21 2e+14
80× 80 184 58 3e+14 179 25 2e+14

are not needed within either the XFEM or the multigrid libraries. Tip enrichments describe local
features and so it is best not to include them into the grid transfer operators. Hence, such enrichments
are smoothed on the finest level only as they are not present oncoarser levels. (Block-)Gauss-Seidel
is used for smoothing combined with a multiplicative Schwarz method on the finest level to address
the ill-conditioning associated with tip degrees of freedom. This entails a direct solve for each set
of unknowns connected to a tip element.

The examples demonstrate the effectiveness of the approach. The number of iterations scales
well with the mesh size. In addition, the proposed method is insensitive to the crack position with
respect to element edges and nodes. It should be possible to apply the same transformation ideas to
branching cracks. Since branches can be modeled by the shifted or original XFEM as well as the
phantom node approach, such a transformation could be established for 2D and 3D problems in a
similar fashion as we demonstrated for non-branching cracks.
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